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Although predicted early in the 20th century, a single-phase vapour rarefaction shock
wave has yet to be demonstrated experimentally. Results from a previous shock tube
experiment appear to indicate a rarefaction shock wave. These results are discussed
and their interpretation challenged. In preparation for a new shock tube experiment, a
global theory is developed, utilizing a van der Waals fluid, for demonstrating a single-
phase vapour rarefaction shock wave in the incident flow of the shock tube. The flow
consists of four uniform regions separated by three constant-speed discontinuities: a
rarefaction shock, a compression shock, and a contact surface. Entropy jumps and
upstream supersonic Mach number conditions are verified for both shock waves.
The conceptual van der Waals model is applied to the fluid perfluoro-tripentylamine
(FC-70, C15F33N) analytically, and verified with computational simulations. The
analysis predicts a small region of initial states that may be used to unequivocally
demonstrate the existence of a single-phase vapour rarefaction shock wave. Simulation
results in the form of representative sets of thermodynamic state data (pressure,
density, Mach number, and fundamental derivative of gas dynamics) are presented.

1. Introduction
Rarefaction shock waves (RSW), and related non-classical phenomena, have been

frequently addressed in this journal. The cited references contain a non-exhaustive
list of JFM papers with analyses that indicate the possibility of sonic shocks (Cramer
& Sen 1986, 1987), split shocks (Cramer 1989; Cramer & Sen 1990; Cramer 1991),
etc., in a pure single-phase vapour. When it was realized that single-phase vapour
non-classical phenomena are probably possible and possibly useful (e.g. Brown &
Argrow 1998, 2000), theoretical efforts produced a general description of the charac-
teristics of non-classical wave fields. This theoretical treatment focused primarily on
simple idealized flow fields and with the exception of the two-phase studies of P. A.
Thompson’s group (Thompson & Kim 1983; Thompson, Carofano & Kim 1986),
analytical and computational studies have not adequately assessed how these features
might be investigated in an experimental device, such as a shock tube (Argrow 1996;
Brown & Argrow 1997).

Despite these analytical and computational studies, experimental confirmation of
the single most important non-classical feature – a RSW, still does not exist. A possible
exception is the experiment of Borisov et al. (1983), where a single-phase vapour RSW
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Figure 1. Shock tube wave field schematic.

is said to be demonstrated. In the next section, this assertion is re-evaluated. Related
vapour-phase features, such as a double sonic shock, are similarly unconfirmed.

We have begun an experimental study of non-classical dense gas dynamics at the
University of Colorado, Boulder. A shock tube has been constructed to generate a
vapour-phase RSW in the incident wave field. A primary difficulty, in our view, is
the lack of a global theory that gives a systematic approach for consistent initial
conditions. This paper provides a theory with supporting analysis. The focus is on the
most feasible experimental case, i.e. an incident shock tube flow that contains no fans
or split waves, but only three distinct discontinuities. This choice is made based upon
the need to produce the maximum strength RSW for experimental measurement.

Figure 1 illustrates the initial and dynamic states of the incident, inviscid wave field.
Figure 1(a) shows the shock tube initial condition with the darker-shaded state 4 the
high pressure and density state, and the lighter-shaded state 1 the low pressure and
density state. The graduated shading in figure 1 illustrates the variation of the density
field. The wave fields are projected onto x, t diagrams where the instant in time t
is marked by the horizontal line. Figure 1(b) illustrates the classical wave field of a
perfect gas, where the head of a rarefaction fan (RF) propagates into the quiescent,
high-density state 4 and a compression shock wave (CSW) propagates into the low-
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density state 1. In figure 1(b) states 2 and 3 respectively refer to the conditions
immediately downstream of the CSW and the contact surface (CS). Note the smooth
density decrease through the RF connecting states 4 and 3. The non-classical triple-
discontinuity wave field of a fluid displaying negative nonlinearity is illustrated in
figure 1(c). The RF has coalesced into a RSW and there is a uniform density value,
state 3, between the RSW and CS.

The following global analysis does not address the totality of shock tube flows
that might contain a RSW. By focusing on the incident flow, various complicating
interactions are avoided, such as an interaction of a wave with an upstream boundary
layer. Moreover, if a triple-discontinuity wave field can be established, its experimental
verification is straightforward and its physical interpretation is unambiguous. Three
assumptions, based on the experimental design, are introduced to facilitate compu-
tation of the triple-discontinuity solution. First, both sides of the tube are assumed
to have the same initial temperature, since a uniform initial temperature is easier to
control and there is no apparent experimental advantage otherwise. Second, the same
fluid is assumed on both sides of the diaphragm. A preliminary analysis that exam-
ined the possibility of using different driver and driven fluids proved unproductive.
The final assumption of a van der Waals (VDW) fluid introduces a relatively simple
equation of state (EOS). Although the VDW model is not particularly accurate, its
analytical simplicity for this type of study is unmatched. Later, the more realistic,
but more complex Martin–Hou (Martin & Hou 1955, 1959) (MH) EOS is used.
Computational fluid dynamics results employing both the VDW EOS and the MH
EOS are also presented. The chosen fluid must possess a relatively large value for
the ratio cν/R, where cν is the specific heat at constant volume and R is the specific
gas constant. This requires a gas molecule with a large number of atoms and a
correspondingly large molecular weight. The magnitude of cν/R required for the gas
model to display negative nonlinearity and support a RSW depends upon the EOS.
This is discussed later.

The present study addresses a number of dense gas flow issues, starting with
the existence of a triple-discontinuity solution. If this solution exists, can it be
realistically demonstrated in a shock tube experiment? What is an appropriate fluid
for this demonstration, and which uniform flow states require a negative value for the
fundamental derivative of gas dynamics? These are some of the questions addressed.

The next section re-examines the experiment of Borisov et al. (1983). Section 3
contains the global analytical model and provides results for perfluoro-tripentylamine
(FC-70, C15F33N). The computational model and simulation results are presented in
§ 4 and § 5. The paper concludes with a summary discussion.

2. Previous experimental results
In the Borisov et al. (1983) experiment, a specially designed shock tube was used

with trifluorochloromethane (F-13, CClF3) in which the initial state of the fluid in
the high-pressure side of the tube was evidently close to the critical point. After the
diaphragm was ruptured, a dispersed wave of about 3 cm thickness propagated into
the fluid on the high-pressure side with little or no change in profile. It was asserted
that this was a single-phase RSW and this assertion is restated in Kutateladze,
Nakoryakov & Borisov (1987).

The interpretation of the data collected in the Borisov et al. (1983) experiment can
be questioned based on thermodynamic arguments and Euler simulations. First, the
choice of fluid is not consistent with the requirements of Thompson & Lambrakis
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Figure 2. Iso-Γ lines for F-13, (a) VDW and (b) MH EOS.

(1973) for negative nonlinearity. The fundamental derivative of gas dynamics,

Γ = 1− ν

a

(
∂a

∂ν

)
s

, (2.1)

is the principal parameter associated with negative nonlinearity and non-classical
behaviour, where ν is the specific volume, a is the speed of sound, and s is the
entropy. Positive and negative nonlinearity are associated with a respective positive
or negative Γ -value. For a perfect gas Γ = (γ + 1)/2, where γ is the ratio of specific
heats and Γ exceeds unity; the perfect gas always exhibits positive nonlinearity.
When the magnitude of Γ is near zero a dispersed wave propagates with little or no
discernible change in its profile (Thompson 1988).

Figures 2(a) and 2(b) are pressure pr vs. specific volume νr diagrams for F-13
using the VDW and MH EOS, where the r subscript indicates reduced variables. The
Γ -contours of both EOS models indicate that F-13 cannot produce a single-phase
vapour state with a negative-Γ value. It should be noted that due to the non-analytical
behaviour of all fluids at a critical point, any classical EOS, including the MH EOS,
is not accurate very near the liquid–vapour critical point. Nevertheless, both figures
indicate qualitative behaviour.

Retrograde behaviour is exhibited by real fluids with high heat capacity (large values
of cν/R) whose vapours tend to condense on adiabatic compression. This contrasts
with the regular behaviour of fluids with lower heat capacity, such as water, which
tend to condense on adiabatic expansion (Thompson et al. 1986). The thermodynamic
requirement for retrograde behaviour is that the derivative of the entropy with respect
to the temperature along the vapour side of the coexistence curve is positive (i.e.
dsg/dT > 0). For real fluids the cν/R value required for the onset of retrograde
behaviour is lower than that for the onset of negative nonlinearity in the vapour
phase (Thompson et al. 1986). This means that for a real fluid to exhibit negative
nonlinearity in the vapour phase it must also exhibit retrograde behaviour. Using a
thermodynamic table (e.g. Stewart, Jacobsen & Penocello 1969) one can demonstrate
that F-13 is not a retrograde fluid – thus it cannot exhibit negative nonlinearity in the
pure vapour phase. On a thermodynamic basis, it appears impossible that F-13 can
exhibit any non-classical behaviour in the pure vapour phase, including a RSW.

An Euler simulation of the experiment was performed using initial conditions
reported in Borisov et al. (1983). Figure 3 shows the pr, νr data, critical isentrope, and
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Figure 3. Coexistence curve, spinodal curve, and critical isentrope for F-13 with simulated pr − νr
data using (a) the VDW and (b) MH EOS.

coexistence and spinodal curves using both the VDW and MH EOS. In each case, a
portion, or all, of the rarefaction wave lies beneath the spinodal curve. This indicates
the wave must contain two-phase liquid states. Our computational model has no
provisions for simulating two-phase flow states, making the results only qualitative.
In figure 3(b) the overshoots in the solution at the intersections of the RF and CSW
states with the CS states are numerical artifacts. The simulations shown in figure 3
were computed with the same algorithm and same level of discretization as the
simulations discussed in more detail in § 5.

Thompson (1991), Kutateladze et al. (1987), and Cramer & Sen (1986) all suggest
that the wave profile may be associated with critical point phenomena due to the
asymptotic increase of the specific heat at constant volume, where cν → +∞ following
the near-critical power law

cν ∝ [(T − Tc)/Tc]−α, (2.2)

where α is the critical exponent (≈ 0.1). The important parameter, however, is not cν
but Γ , which becomes positively infinite as the critical point is approached from any
direction in the vapour region (Emanuel 1996). Consequently, the initial high-pressure
state may not have been as close to the critical point as expected. Alternatively, the
shock adiabat that passes through the critical point falls inside the spinodal curve
and the flow would not be single phase.

The cumulative weight of evidence suggests that the Borisov et al. (1983) experiment
did not produce a single-phase RSW.

3. Analytical model
In preparation for our experimental study, a systematic approach for generating

experimental initial conditions for the shock tube is required. Since any RSW is
necessarily weak, emphasis must be placed on producing the maximum-strength
wave. As previously stated, design considerations for the apparatus and relevance
of the analytical model suggest a uniform initial temperature throughout the entire
tube with the same fluid for both the driver and driven sections. The algorithm for
analytically determining the initial and stationary states of the shock tube wave field
is developed using the VDW EOS with results for the MH EOS also included.

Relevant thermodynamic equations for a VDW fluid (Emanuel 1997) are summar-
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Figure 4. pr, νr diagrams showing the coexistence curve, Γ = 0 contour, Γmin curve, and the
respective states for cases (a) VDW1 and (b) VDW2. The state-d adiabat passes through states a, b,
and 4.
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Figure 5. pr, νr diagrams showing the coexistence curve, Γ = 0 contour, Γmin curve, and the
respective states for cases (a) MH1 and (b) MH2. The state-d adiabat passes through states a, b,
and 4.

ized in the Appendix. A c subscript denotes a critical-point value, an r subscript
denotes a reduced variable, an overbar denotes a dimensional quantity, and f and
g subscripts respectively denote the liquid and vapour sides of the coexistence curve
(see (A 7) and (A 8) in the Appendix). It is assumed that m (= cν/R) is a constant.
Since the initial states have the same temperature and both shock waves are nearly
isothermal, the constant-cν assumption does not introduce significant error.

Figures 4 and 5 show the coexistence curve, the Γ = 0 curve, an adiabat, and
several other features that will be discussed later for FC-70 (m = 118.7). The VDW
EOS was used to produce figure 4 and the MH EOS was used for figure 5. Near the
critical point the MH coexistence curve is flatter, in better accord with coexistence
curves based on experimental data. Because of the overall similarity and relatively
simple closed-form expressions, it is appropriate to discuss the VDW topology.

For a sufficiently large value of m, the VDW Γ = 0 curve is

Tr =
m2

4(m+ 1)(2m+ 1)

(3νr − 1)3

ν4
r

. (3.1)
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Along a single-phase isentrope, Γ has a minimum value. This value is negative if it
occurs inside the Γ = 0 contour. The equation for this Γmin curve is (Emanuel 1997)

Tr =
(3νr − 1)2[3(m− 1)2ν2

r + m(7− 4m)νr + 3m2]

4(m+ 1)(2m+ 1)ν4
r

, (3.2)

and the value for Γ on this curve is

Γmin =
2m+ 1

2m

3(m− 1)νr − 4m

(m− 1)νr − m
νr

3νr − 1
. (3.3)

The Γmin curve intersects the coexistence curve near the critical point and has its most
negative single-phase value at this state.

The first step in the global procedure is to choose a state point d that is on the Γmin
curve, where Γ is negative, and to the right of the coexistence curve (see figure 4). A
shock adiabat that passes through state d is constructed according to

hr − hrd = 3(pr − prd)(νr + νrd)/16, (3.4)

where h and p are enthalpy and pressure. Because of the location of state d, a portion
of the adiabat through this state must be inside the negative-Γ region. For analytical
convenience this relation is rewritten as

pr = N/D, (3.5)

where

N(νr;m, hrd, νrd, prd) = 16m− 12 + 16hrd − 18(m− 1)νr − 6m

ν2
r

− 3(νr + νrd)prd, (3.6)

D(νr;m, νrd) = 3(2m+ 1)νr − (3νrd + 2m). (3.7)

When m is sufficiently large (m > 16.7 for the VDW EOS) the adiabat may have
two inflection points in the vapour region and the Γ = 0 curve passes through these
points. Outside of these inflection points are two state points, a and b, where a
straight line (a Rayleigh line) through them is tangent to the adiabat at these points,
as illustrated in figure 6. For clarity, the curvature of the adiabats is exaggerated in
the figure. Observe that states a and b are uniquely defined in terms of m, pr , and
νr , and that Γa and Γb are positive; indeed, Γa is generally well in excess of zero.
Since the Rayleigh line is tangent to the adiabat at states a and b, the slope of the
adiabat at these two points is the slope of the straight Rayleigh line. This gives the
two conditions that define states a and b and determine νra and νrb,(

1

D

dN

dνr
− N

D2

dD

dνr

)
νr=νra

=

(
1

D

dN

dνr
− N

D2

dD

dνr

)
νr=νrb

, (3.8)

(νra − νrb)
(

1

D

dN

dνr
− N

D2

dD

dνr

)
νr=νra

=
N(νra)

D(νra)
− N(νrb)

D(νrb)
, (3.9)

where νrb > νrd > νra.
The only function of states a and b is as convenient reference states and bounds

for states 4 and 3, which are the upstream and downstream states for the disturbance
in the high-pressure region. The specific volume at these states is defined in terms of
νra and νrb as

νr3 = νrb − δ3(νrb − νra), νr4 = νra + δ4(νrb − νra), (3.10)

where δ3 and δ4 are prescribed non-negative parameters. State 4 is chosen as the
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upstream state on the adiabat through state d,

hr4 − hrd = 3(pr4 − prd)(νr4 + νrd)/16, (3.11)

whereas state 3 is on a different adiabat through state 4, referred to as adiabat 4–3,

hr3 − hr4 = 3(pr3 − pr4)(νr3 + νr4)/16. (3.12)

We can eliminate hr4 from the previous two equations to obtain

hr3 − hrd = 3[pr3(νr3 + νr4) + pr4(νrd − νr3)− prd(νrd + νr4)]/16, (3.13)

which is not an adiabat connecting states d and 3. Thus, as sketched in figure 6, state
3 is not on the state-d adiabat. The adiabat with state 3, adiabat 4-3, is very close to
the one through state d; it is not shown in figures 4 and 5. Thus, pr4 is determined by
(3.5), whereas pr3 requires that the d subscript be replaced with a 4 in this equation.
States a and b correspond to a double sonic shock. In the limit when δ3 = δ4 = 0,
state 4 becomes state a but state 3 does not become state b, although it is very close
to this state. Specification of νrd, δ3, and δ4 thermodynamically fixes states a, b, d, 3,
and 4. As will be evident, states 1 and 2 are also fixed.

Mass and momentum conservation provide the shock speed u4 and flow speed for
state 3, in a laboratory reference frame,

u4 = −νr4
(

3RTc
8

pr4 − pr3
νr3 − νr4

)1/2

, u3 =

(
1− νr3

νr4

)
u4. (3.14)

The corresponding Mach numbers, in a shock-fixed frame, are

M4 = − u4

acar4
, M3 =

u3 − u4

acar3
, (3.15)

where the Appendix provides equations for ac and ar . The CS and initial conditions
are imposed, i.e.

u2 = u3, pr2 = pr3, Tr1 = Tr4. (3.16)
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Case State pr νr Γ M

VDW1 1 0.8355 2.1658 0.3505 1.0291
2 0.9431 1.7064 0.0109 0.9843
3 0.9431 1.6474 −0.1476 0.9251
4 1.0417 1.1464 −0.9630 1.0106

VDW2 1 0.6898 2.9506 0.6112 1.1008
2 0.8758 2.0200 0.2827 0.9218
3 0.8758 1.9358 0.1715 0.9314
4 1.0608 1.0000 1.7728 1.1780

Table 1. Shock tube conditions for cases VDW1 and VDW2 for νrd = 1.20.

The shock jump conditions then result in

νr2 − νr1 +
8

3RTc

u2
2

pr2 − pr1 = 0, (3.17)

9

4

νr1 − νr2
νr1νr2

+

(
3νr1

3νr1 − 1
+ m

)
Tr1

−3νr2 − 1

8

(
pr2 +

3

ν2
r2

)(
3νr2

3νr2 − 1
+ m

)
+

u2
2

2RTc

νr1 + νr2

νr1 − νr2 = 0, (3.18)

for states 1 and 2. The unknowns are νr1 and νr2, where, for a compressive shock
wave, νr1 > νr2. Once these are found, other parameters are easily determined, since
u2, pr2, and Tr1 are also known. For instance, the compressive shock speed and Mach
number are given by

u1 =
u2

1− νr2/νr1 , M1 =
u1

acar1
. (3.19)

Van der Waals modelling of a variety of fluids, including FC-70, provides several
general conclusions. For values of νrd below about 1.1, state 4 is in the two-phase
mixture region and relatively close to the critical point. On the other hand, the Γmin
and Γ = 0 curves cross when (Emanuel 1997)

ν∗rd =
4m

3(m− 1)
. (3.20)

At this νrd value, states a, b, and d coincide. Thus, there is a relatively narrow range
of values (1.15 6 νrd 6 1.30) for which useful triple-discontinuity solutions exist for a
VDW fluid. Indeed, for slightly positive values of δ3 and δ4 these solutions do exist
in the sense that

sr3 > sr4, sr2 > sr1, M3 < 1 < M4, pr3/pr4 < 1 < pr2/pr1. (3.21)

As νrd approaches ν∗rd from below, both shocks weaken. It is experimentally advanta-
geous, therefore, to choose state d as close to the coexistence curve as possible. This
choice must be made such that state 4 does not enter a two-phase flow regime nor
come near the critical point. For a sufficiently large m value, with νrd in the above
range, and with δ3 and δ4 restricted to values such that νra < νr4 < νrd < νr3 < νrb the
foregoing global construction demonstrates that triple-discontinuity solutions exist.

Satisfactory results, in terms of an experimentally detectable value for pr3/pr4 are
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Case State pr νr Γ M

MH1 1 0.8666 2.4597 0.2258 1.0097
2 0.9282 2.0931 0.0822 0.9863
3 0.9282 1.9600 −0.0914 0.9793
4 0.9866 1.5733 −0.0780 1.0108

MH2 1 0.7549 3.2617 0.4770 1.0527
2 0.8807 2.4479 0.2620 0.9476
3 0.8807 2.2627 0.0685 0.9805
4 1.0056 1.4432 0.1886 1.0127

Table 2. Shock tube conditions for MH1 and MH2 for νrd = 1.67.

Case νrd Γd δ3 δ4

VDW1 1.20 −1.0503 0.506 0.145
VDW2 1.20 −1.0503 0.305 0.043
MH1 1.67 −0.1499 0.395 0.214
MH2 1.67 −0.1499 0.089 0.083

Table 3. Sample input conditions for fluid FC-70.

obtained with state d close to the coexistence curve. With appropriate choices for δ3

and δ4, Γ3 and Γ4 are positive as shown in figures 4(b) and 5(b), and tables 1 and
2. It is therefore not necessary for either of these values to be negative. This may be
important for experimentally demonstrating a RSW since it maximizes the pressure
jump across both shocks. Of course, it is essential that the adiabat curve that connects
these states pass through the negative-Γ region as shown.

When applied to commercially available fluids, the outlined procedure yields en-
couraging results for realizable experiments. Table 3 provides fluid properties and
shock tube initial conditions for FC-70. Since shock tube experiments, based on the
theory just developed, are to be performed with FC-70, it is imperative that the above
analysis be confirmed with a more realistic EOS. Figure 5 illustrates the shock tube
initial conditions for FC-70 using the MH EOS for the data in table 3. In both MH
cases state d is a vapour state well removed from the critical point. Compared to the
VDW results, the negative-Γ region is noticeably smaller and further removed from
the critical point, thus the region of initial conditions is significantly reduced. The
wave fields generated using the MH EOS also contain discontinuities of compara-
tively reduced strength as represented by the respective pressure ratios. Note that
a smaller value for the pressure ratio pr3/pr4 corresponds to a stronger RSW. The
maximum-strength RSW, for a given value of νrd, is determined by the ratio pb/pa
and table 4 indicates that any RSW will be weak, but some should be experimentally
detectable. For the VDW simulations, the RSW pressure ratio is pr3/pr4 = 0.9053 for
case VDW1 and pr3/pr4 = 0.8256 for case VDW2. Compared to these representative
cases, the RSW pressure ratio for the MH simulations is increased somewhat with
pr3/pr4 = 0.9408 for case MH1 and pr3/pr4 = 0.8758 for case MH2.

Several general characteristics for triple-discontinuity solutions are evident from the
shock tube flow modelling. A narrow, but finite, range of νrd values yield flows with
three distinct discontinuities. In terms of experimental feasibility, the incident waves
are predicted to have sufficient strength (in terms of pressure ratios) to be detected
with readily available pressure transducers. As is typical of non-classical dense gas
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Case pr2/pr1 Tr2/Tr1 pr3/pr4 Tr3/Tr4

VDW1 1.1288 1.0024 0.9053 0.9959
VDW2 1.2697 1.0037 0.8256 0.9923
MH1 1.0710 1.0021 0.9408 0.9966
MH2 1.1666 1.0033 0.8758 0.9932

Table 4. Ratios for table 3 cases.

flows, the shock Mach numbers are close to unity. For each of the four cases presented,
the largest flow speed is u1 = 63.35 m s−1, the speed of the compression shock wave
propagating at M1 = 1.0291 in case VDW2.

4. Computational modelling
The two-dimensional Euler equations are numerically integrated for the wave field

evolution. In non-dimensional conservative-vector form,

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0, (4.1)

Q = [ρr, ρru, ρrv, ρret]
T , (4.2)

E = [ρru, ρru
2 + Zcpr, ρruv, u(et + Zcpr)]

T , (4.3)

F = [ρrv, ρruv, ρrv
2 + Zcpr, v(et + Zcpr)]

T . (4.4)

Here, time is denoted by t, x and y are the axial and transverse spatial coordinates
with u and v the velocity components in the respective coordinate directions, et is
the specific total energy, and Zc is the critical compressibility. The density ρ and
pressure p are again written in reduced form denoted by the r subscript. The overall
non-dimensionalization scheme is as follows:

pr = p̄/p̄c, ρr = ρ̄/ρ̄c, Tr = T̄ /T̄c,

u = ū/(R̄T̄c)
1/2, v = v̄/(R̄T̄c)

1/2, e = (ē− ec)/(R̄T̄c)1/2,

s = (̄s− s̄c)/R̄, a = ā/(R̄T̄c)
1/2, x = x̄/L̄, y = ȳ/L̄,

 (4.5)

where the overbar and c subscript again refer dimensional quantities and critical
values respectively. The characteristic dimension of the computational domain in the
transverse direction is L̄.

With νr = 1/ρr , the VDW and MH thermal EOS are, respectively,

pr =
8Tr

3νr − 1
− 3

ν2
r

, (4.6)

pr =
Tr

Zc(νr − b) +
A2 + B2Tr + C2e

−5.475Tr

(νr − b)2

+
A3 + B3Tr + C3e

−5.475Tr

(νr − b)3
+

A4

(νr − b)4
+
B5Tr + C5e

−5.475Tr

(νr − b)5
. (4.7)

For the VDW cases, Zc = 3/8. The coefficients Ai, Bi and Ci are numerical constants
found in Martin & Hou (1955, 1959) with useful estimation techniques for the Boyle
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Figure 7. pr, νr diagrams showing the coexistence curve and Γ = 0 contour with states 1–4 for
cases (a) VDW1 and (b) VDW2.

temperature and acentric factor given by Cramer (1989) and Cramer & Best (1991).
Expressions for flow variables such as speed of sound, enthalpy, and entropy can be
calculated according to Cramer (1989) for both EOS.

The Euler simulations are computed using the explicit, total variation diminishing
predictor-corrector (TVDPC) scheme of Brown & Argrow (1997, 1998). The scheme
is second-order accurate in space and time. Adiabatic solid-wall boundary conditions
are imposed. Validation of the numerical algorithm for VDW and MH calculations
is shown in Brown & Argrow (1997).

5. Simulations
The shock tube is modelled as a 5.0 m × 0.025 m plane with solid-wall boundary

conditions. The computational domain is divided into 2000 cells in the x-direction
along the length of the tube and 40 cells in the transverse y-direction. The CFL
number for all Euler simulations is 0.4. Thermodynamic properties of FC-70 used for
the simulations are

p̄c = 10.2 atm, T̄c = 608.2 K, M̄ = 821 kg kmol−1, m = 118.7

where M̄ is the molecular weight.
Four cases are presented to test the validity of the initial-condition algorithm

for generating a triple-discontinuity wave field. These cases represent possible initial
conditions for experiments. Figures 7 and 8 show the VDW and MH (pr, νr)-planes
for FC-70 first shown in figures 4 and 5, but now with the thermodynamic states from
the Euler simulations superimposed. The closely spaced points that appear as curves
connecting states 1–4 are the discrete pr, νr states of each of the 2000 computational
cells. The curve between states 3 and 4 represents the corresponding RSW adiabat,
with the CSW adiabat between states 1 and 2. The line between states 2 and 3 is
the isobaric solution for the CS. Note that these thermodynamic states are associated
with the incident wave field and do not change until the waves reflect from the
endwalls. Particular thermodynamic values associated with states 1–4 are in tables 1
and 2. For an ‘ideal’ Euler calculation, there are no intermediate states through
discontinuities. Because the ‘numerical discontinuities’ are smeared by the shock-
capturing scheme, there is an artificial shock profile with associated thermodynamic
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Figure 8. pr, νr diagrams showing the coexistence curve and Γ = 0 contour with states 1–4 for
cases (a) MH1 and (b) MH2.

x (m)

òr

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.7

0 1 2 3 4 5

0.8

0.9

1.0

1.1

pr

–1.0

0 1 2 3 4 5

–0.5

0

0.5

1.0

1.5

1 2 3 4 5
0

0.1

0

0.2

0.3

x (m)

C
M
u

M

u

Figure 9. Distribution of pr , ρr , u, M and Γ for case VDW1.

states. This simulation feature is discussed by Argrow (1996). The agreement between
the flow states computed with the analytic procedure and the simulated states is
excellent for all cases.

Figures 9–12 verify the triple-discontinuity characteristics of each case. The centre-
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Figure 10. Distribution of pr , ρr , u, M and Γ for case VDW2.

line distributions of pr, ρr , u, M, and Γ correspond to the pr, νr mappings in figures 7
and 8. The flow velocity u and Mach number M are with respect to a laboratory
frame. This is in contrast to tables 1 and 2 where M is measured relative to the
shock-fixed coordinates of the appropriate shock. The triple-discontinuity solution is
most evident in the centreline density profile. The left-moving RSW and the right-
moving CSW correspond to the large jumps in ρr and the CS corresponds to the
smaller jump between them. The apparent undershoot in the Γ -distribution is again
associated with the smearing of the numerical discontinuity described by Argrow
(1996). Both the RSW and CSW have relatively low propagation speeds in all cases.
For instance, the CSW in case MH2 attains a speed of only 52.61 m s−1 compared to
23.12 m s−1 for the RSW. The low wave-propagation speeds are due to the relatively
low speed of sound typical of a dense gas.

An interesting feature of the VDW2 and MH2 cases is an apparent relaxation of
the Γ < 0 condition for negative nonlinearity. Evidently, it was assumed that all wave
states must lie within the Γ < 0 region to produce a RSW. For the VDW2 and MH2
initial conditions, a RSW is produced even though states 3 and 4 are both outside the
Γ < 0 region. This relaxation of the Γ < 0 restriction follows from the requirement
that states 3 and 4 lie between states a and b. Since states a and b define the Rayleigh
line for a double-sonic RSW adiabat (see figure 6), states 3 and 4 must constitute a
single wave, regardless of the respective values of Γ . By placing states 3 and 4 to
satisfy this condition, the Rayleigh line defining the discontinuity must begin at state
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Figure 11. Distribution of pr , ρr , u, M and Γ for case MH1.

4, pass within the Γ < 0 region, and not cross the adiabat before reaching state 3.
This guarantees the discontinuity will not be a composite wave and indeed is a single
RSW.

6. Summary
A review of the literature reveals only one experimental study (Borisov et al. 1983)

that focuses upon single-phase, non-classical dense gas phenomena. The interpretation
of the results of that study is inconsistent with the thermodynamic requirements for
non-classical behaviour. The range of F-13 thermodynamic states in the rarefaction
wave they describe indicates that some of these states are possibly in the vapour–liquid
mixture region. The apparent non-classical features of the wave may be associated
with critical point phenomena or two-phase flow. This conclusion is consistent with
that of others (Thompson 1991; Kutateladze et al. 1987; Cramer & Sen 1986).

In preparation for a new experimental study, a global model is constructed to
investigate the initial conditions required to produce a triple-discontinuity wave field
in the incident flow of a shock tube, where one discontinuity is a RSW. The described
procedure provides a starting point for shock tube experiments that produce non-
classical phenomena due to negative nonlinearity in the vapour phase of dense fluids.
For a given experiment, the flow field initial conditions are fixed with the choice
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Figure 12. Distribution of pr , ρr , u, M and Γ for case MH2.

of three parameters: νrd, δ3, and δ4. Adjustment of the input parameters enables an
approximate maximization of the RSW shock strength, thus enhancing the probability
of detection. For the fluid FC-70, a finite but small region of initial states exists where
the entropy jump and upstream Mach number are satisfactory. The VDW model is
confirmed using a similar model with the MH EOS. This model further demonstrates
that the high-pressure state is not close to either the critical point or the coexistence
curve. Further analysis of the FC-70 wave field, using an Euler flow solver with the
MH EOS, provides additional confirmation of the global model.

There are initial conditions that produce a RSW for which the upstream state 4 and
the downstream state 3 have Γ -values greater than zero. This unexpected prediction
from the conceptual model is verified with the Euler flow solver and indicates that
some conditions previously thought to produce a composite rarefaction wave (shock–
fan–shock) actually produce a single RSW. By locating states 4 and 3 between the
tangency points of the Rayleigh line on the shock adiabat (figure 6), the resulting
wave is a RSW with no composite features. This relaxation of initial conditions may
be fortuitous for proposed experiments, since any increase in the pressure differentials
should make the wave field easier to resolve.

This work is supported, in part, by NSF Grant CTS-9902126.
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Appendix. Equations for a van der Waals Fluid

pr =
8Tr

3νr − 1
− 3

ν2
r

, (A 1)

hr = enthalpy =
h̄− h̄c
R̄T̄c

=
3(νr − 3)

4νr
+

3νrTr
3νr − 1

+ m(Tr − 1), (A 2)

sr = entropy =
s̄− s̄c
R̄

= ln

(
3νr − 1

2

)
+ m lnTr, (A 3)

ar = speed of sound =
ā

āc
=

{
mν2

r

[
m+ 1

m

9Tr
(3νr − 1)2

− 1

ν2
r

]}1/2

, (A 4)

āc =
3

2

(
R̄T̄c

m

)1/2

, (A 5)

Γ =
3m

2νra2
r

[
4(m+ 1)(2m+ 1)

m2

ν4
r Tr

(3νr − 1)3
− 1

]
, (A 6)

Tr =
(3νrg − 1)(3νrf − 1)(νrg + νrf)

8ν2
rgν

2
rf

, (A 7)

ln
3νrg − 1

3νrf − 1
=

3(νrg − νrf)(6νrgνrf − νrg − νrf)
(3νrg − 1)(3νrf − 1)(νrf + νrg)

. (A 8)
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